Scientists are working on a simple, inexpensive process that can transform normal hardwoods, such as oak or maple into a tough, durable material that is stronger than steel, perhaps even titanium. The practical applications of using this improved wood are open to anything, including bullet-resistant armor.
Wood is abundant and relatively low-cost—it literally grows on trees. And although it has been used for millennia to build everything from furniture to homes and larger structures, untreated wood is rarely as strong as metals used in construction. Researchers have long tried to enhance its strength, especially by compressing and “densifying” it, says Liangbing Hu, a materials scientist at the University of Maryland, College Park. But densified wood tends to weaken and spring back toward its original size and shape, especially in humid conditions.
Now, Hu and his colleagues say they have come up with a better way to densify wood, which they report in the February 7 Nature. Their simple, two-step process starts with boiling wood in a solution of sodium hydroxide (NaOH) and sodium sulfite (Na2SO3), a chemical treatment similar to the first step in creating the wood pulp used to make paper. This partially removes lignin and hemicellulose (natural polymers that help stiffen a plant’s cell walls)—but it largely leaves the wood’s cellulose (another natural polymer) intact, Hu says.
You've reached your daily free article limit.
Subscribe and support our veteran writing staff to continue reading.
Scientists are working on a simple, inexpensive process that can transform normal hardwoods, such as oak or maple into a tough, durable material that is stronger than steel, perhaps even titanium. The practical applications of using this improved wood are open to anything, including bullet-resistant armor.
Wood is abundant and relatively low-cost—it literally grows on trees. And although it has been used for millennia to build everything from furniture to homes and larger structures, untreated wood is rarely as strong as metals used in construction. Researchers have long tried to enhance its strength, especially by compressing and “densifying” it, says Liangbing Hu, a materials scientist at the University of Maryland, College Park. But densified wood tends to weaken and spring back toward its original size and shape, especially in humid conditions.
Now, Hu and his colleagues say they have come up with a better way to densify wood, which they report in the February 7 Nature. Their simple, two-step process starts with boiling wood in a solution of sodium hydroxide (NaOH) and sodium sulfite (Na2SO3), a chemical treatment similar to the first step in creating the wood pulp used to make paper. This partially removes lignin and hemicellulose (natural polymers that help stiffen a plant’s cell walls)—but it largely leaves the wood’s cellulose (another natural polymer) intact, Hu says.
The second step is almost as simple as the first: Compressing the treated wood until its cell walls collapse, then maintaining that compression as it is gently heated. The pressure and heat encourage the formation of chemical bonds between large numbers of hydrogen atoms and neighboring atoms in adjacent nanofibers of cellulose, greatly strengthening the material.
The results are impressive. The team’s compressed wood is three times as dense as the untreated substance, Hu says, adding that its resistance to being ripped apart is increased more than 10-fold. It also can become about 50 times more resistant to compression and almost 20 times as stiff. The densified wood is also substantially harder, more scratch-resistant and more impact-resistant. It can be molded into almost any shape. Perhaps most importantly, the densified wood is also moisture-resistant: In lab tests, compressed samples exposed to extreme humidity for more than five days swelled less than 10 percent—and in subsequent tests, Hu says, a simple coat of paint eliminated that swelling entirely.
A five-layer, plywoodlike sandwich of densified wood stopped simulated bullets fired into the material—a result Hu and his colleagues suggest could lead to low-cost armor. The material does not protect quite as well as a Kevlar sheet of the same thickness—but it only costs about 5 percent as much, he notes.
While the military applications could prove to be limited in an experiment such as this, the practical uses, such as building homes with the improved hardwood or even using it in commercial applications where steel or aluminum is used today will bear watching in the future.
To read the entire article from Scientific American, click here:
Photo courtesy Wikipedia
Should the US Air Force Buy 250 B-21 Stealth Bombers?
Inside Delta Force: America’s Most Elite Special Mission Unit
Russia Fires Intercontinental Ballistic Missile at Ukraine in Historic First
SOFREP Interviews Chelsea Walsh: The Nurse Who Reported Red Flags About Trump’s Would Be Assassin
Happy Birthday Delta Force!
Join SOFREP for insider access and analysis.
TRY 14 DAYS FREEAlready a subscriber? Log In
COMMENTS
You must become a subscriber or login to view or post comments on this article.