All across the military, there is a rapid push to modernize. From new weapons systems to fast-paced tactical vehicles and even augmented reality goggles, the U.S. Armed Forces are being catapulted headlong into the technologically-advanced battlefield of the 21st century. But for every piece of new technology, there are scores of mission-critical machines that are still largely analog. Nowhere is this more apparent than with the U.S. Army’s fleet of helicopters. 

Helicopters are at the heart of Army operations. From the load-bearing, double-rotored Chinook to the agile attack choppers such as the Cobra, Apache, and Little Bird, rotary-wing aircraft comprise a huge part of our military’s lethality and operational capabilities. But in a world of increasing focus on the virtual, Army helicopters represent an aging aspect of our war-fighting machine. 

Army Helicopters in Vietnam
UH-1D “Huey” Helicopters on a battlefield in Vietnam. (U.S. Army)

There have been huge advancements in rotary-wing technology since the infamous Bell UH-1 Iroquois, or Huey, first flew into combat in the Vietnam war. But while modern helicopters might make the Huey look like a flying tin can, they are still confined by the same basic limitations.

High on the list of limitations is gravity. Unlike fixed-wing aircraft, helicopters can’t glide if their engines fail or become disabled. Main engine and tail rotors are still extremely susceptible to enemy fire. Engines, which require clean air intake for proper combustion, can still be choked by dust and sand. And, like all largely analog machines, helicopters require frequent maintenance.

But while Army technicians have yet to overcome the limitations caused by the physical forces of our planet, they are working to revolutionize how choppers are maintained. Earlier this month, JAIC, the DoD’s Joint Artificial Intelligence Center, announced a new program that enlists the help of AI to streamline helicopter maintenance. 

The program centers around a machine learning tool called the Work Unit Code (WUC) Corrector which is designed to improve the overall quality of H-60 helicopter maintenance records for improved fleet health reporting. The WUC Corrector utilizes natural language processing to read maintenance records filled out by the maintenance teams. It then revises unit codes and maintenance time entries (which are alphanumeric codes associated with specific aircraft component types and resources required to perform a given maintenance task) to streamline on-the-ground maintenance. 

To implement the new software, JAIC worked closely with the 160th Special Operations Aviation Regiment, the aviation support wing of the U.S. Special Operations Command, also known as the Night Stalkers.

Army Little Bird Helicopters attached to 160th SOAR
U.S. Army Rangers from 75th Ranger Regiment and 160th Special Operations Aviation Regiment (Airborne) conduct training operations in support of the Army Marketing Research Group’s “Warriors Wanted” campaign at Fort Campbell, KY, on July 19, 2018. (Image Used in the Special Operations Recruiting Battalion Campaign.)

“We leveraged the rapid and agile development processes incorporated directly inside the 160th SOAR to deliver and scale this capability,” said U.S. Army Colonel Kenneth Kliethermes, head of the JAIC’s Joint Logistics mission initiative. “Our work with the 160th SOAR is a great example of fielding AI/ML capabilities by integrating the development, testing, and validation of these tools within an active operational environment. This approach is how the JAIC is enabling the warfighter by working directly with them to provide scalable and operationally relevant AI-enabled capabilities.”