On August 29, 1949, the Soviet Union conducted its first-ever atomic weapons test, thus ending America’s monopoly on the most destructive weapon system ever conceived by man. An arms race that had already begun immediately kicked into high gear, with both nations working frantically to develop new weapons and capabilities that were powerful enough to keep the opposition in check.

From our modern vantage point, the Cold War between America and the Soviet Union seems like an exercise in overblown budgets and paranoia. But it’s important to remember the context of the day. Many senior leaders in both Washington and Moscow had seen not one but two World Wars unfold during their lifetimes. After the uneasy alliance between the Soviet Union and the rest of the Allied Nations failed to last beyond the final shots of World War II, many believed a third global conflict would be coming in short order. And terrifyingly, most — including those with their fingers on the proverbial nuclear buttons — believed it would begin with a nuclear exchange.

Although the destructive force of the atom bombs dropped on Hiroshima and Nagasaki had been so monstrous that they changed the geopolitical landscape of the world forever, both the U.S. and Soviet Union immediately set about developing newer, even more powerful thermonuclear weapons. Other programs, ranging from ballistic missiles to unguided bombs, sought new and dynamic delivery methods for these powerful nukes.

Project Pluto and the SLAM Missile

One such effort under the supervision of the U.S. Air Force was a weapon dubbed the Supersonic Low Altitude Missile or SLAM (not to be mistaken for the later AGM-84E Standoff Land Attack Missile). The SLAM missile program was to utilize a ramjet nuclear propulsion system being developed under the name Project Pluto. Today, Russia is developing the 9M730 Burevestnik, or Skyfall missile, to leverage the same nuclear propulsion concept.

As Russian President Vladimir Putin recently pointed out, nuclear propulsion offers practically endless range, and estimates at the time suggested the American SLAM Missile would likely fly for 113,000 miles or more before its fuel was expended. Based on those figures, the missile could fly around the entire globe at the equator at least four and a half times without breaking a sweat.

Project Pluto
The Alien looking SLAM Missile from Project Pluto (YouTube)

The unshielded nuclear reactor powering the missile would practically rain radiation onto the ground as it flew offering the first of at least three separate means of destruction the SLAM missile provided. In order to more effectively leverage the unending range of the nuclear ramjet, the SLAM missile was designed to literally drop hydrogen bombs on targets as it flew. Finally, with its bevy of bombs expended, the SLAM missile would fly itself into one final target, detonating its own thermonuclear warhead as it did. That final strike could feasibly be days or even weeks after the missile was first launched.

Over time, the SLAM missile came to be known as Pluto to many who worked on it, due to the missile’s development through the project with the same name.

Nuclear Propulsion

project pluto
“Tory II-A” engine developed by Project Pluto.

The nuclear ramjet developed for SLAM under Project Pluto was designed to draw in air from the front of the vehicle as it flew at high speed creating a significant amount of pressure. The nuclear reactor would then superheat the air and expel it out the back to create propulsion. This ramjet methodology is still in use in some platforms today and plays a vital role in some forms of hypersonic missile programs.