A new initiative from the United States Army’s Combat Capabilities Development Command Army Research Laboratory is seeking to build the next generation of battlefield robots. But unlike drones or first-generation four-legged robots like the Army’s Legged Locomotion and Movement Adaptation, or LLAMA, these new robots will fuse robot technology with actual muscle fibers. The goal, according to a recently-released video on the technology, is to develop a class of more agile and dynamic robots capable of operating in a wider range of environments and applications.

This program falls under a relatively new scientific approach to robotics called Biohybrid Robotics. Simply put, Biohybrid Robotics can be thought of as the inverse of a cyborg, or cybernetic organism. Where a cyborg is an entity consisting largely of biological material that is enhanced by technology, the majority of a biohybrid robot is technological but enhanced by biological material. In this case, the Army Research Laboratory (ARL) is hoping to replace mechanical actuators — which are inherently limited in their output — with muscle fibers that can adjust and evolve to meet the challenges of a dynamic battlespace. 

Although the application of biohybrid technology is still years away, experts believe it could be a breakthrough for robotics and the battlefield. Dr. Dean Culver, a research scientist at ARL, believes that biohybrids will be able to support soldiers in a much more comprehensive way because they’ll be able to overcome environmental anomalies much better than traditional robots.