Hypersonic platforms, or aircraft and weapons that can travel at speeds in excess of Mach 5, have become a significant concern for the American defense apparatus over the past year or so. With the recent revelation that both China and Russia are quickly moving toward deploying operational hypersonic missile platforms, the U.S. has been forced to not only acknowledge that no existing missile defense system is capable of intercepting such fast-moving weapons, but worse, that America is currently years behind the competition when it comes to fielding hypersonic weapons of its own.

In 2018, Lockheed Martin was awarded more than a billion dollars to try to expedite a hypersonic weapon than can fill the capability gap represented by this apparent strategic blunder. But as one peruses weapons programs from the past few decades, one can’t help but wonder–where did this capability gap come from?

In 2004, NASA’s hypersonic flight research program made an incredible announcement: its purpose-built X-43A, a 12-foot long unmanned scramjet technology demonstrator, had done the seemingly impossible. It had reached an astonishing Mach 9.6 in a test flight fired from the wing of a B-52 Stratofortress.

Once again we made aviation history,” said Vince Rausch, Hyper-X program manager from NASA’s Langley Research Center in Virginia. “We did that in March when we went seven times the speed of sound and now we’ve done it right around 10 times the speed of sound.”

Is the US government lying about being behind Russia and China in hypersonic technology?
X-43A hypersonic research aircraft, attached to a modified Pegasus booster rocket, on NASA’s B-52B launch aircraft from the NASA’s Dryden Flight Research Center at Edwards Air Force Base, California. (NASA)

It was the culmination of the X-43A program, and at the time, broke the record for velocity from any flight vehicle set by the very same program a few years prior. The success was heralded as a leap forward in aviation technology, undoubtedly leading to breakthroughs that would allow for increased payload capacity and far greater speeds out of American military and even civilian aerospace endeavors in the years to come.

Then in 2010, the Boeing X-51 Waverider, another unmanned scramjet technology demonstrator, completed a successful flight test that reached Mach 5 at an altitude of around 70,000 feet. The engine did not fire for as long as the test intended, but surpassed the X-43 in the duration its scramjet functioned. Subsequent tests were conducted in 2011, 2012, and culminated with a flight that was considered an overall success in May of 2013–achieving a speed of Mach 5.1 and firing its scramjet for 210 seconds before the running out of fuel and crashing into the Pacific Ocean.

It was a full mission success,” Charlie Brink, X-51A program manager for the Air Force Research Laboratory Aerospace Systems Directorate, said in a statement.

Is the US government lying about being behind Russia and China in hypersonic technology?
B-52 Stratofortress with an X-51A Waverider under its wing. (USAF)

In August of 2011, DARPA’s Falcon Project culminated with a flight test of the HTV-2, an unmanned glide vehicle that achieved the mind-boggling speed of Mach 20. The vehicle transmitted data back to the DARPA team for nine full minutes of continued flight. At those velocities, the HTV-2 could feasibly travel from New York City to Los Angeles in less than 12 minutes.