Today we have for our readers a special interview with an aerospace engineer and friend of SOFREP, who we know as ColonelProp, who graciously allowed us to kill a few hours of his time with our questions.  Because this individual works on some sensitive programs for the United States government, this interview had to be cleared with official offices.  What you will read here is cleared information, not a disclosure of any classified information.  However, it is a great inside look at a world that most of us do not usually get to see.  This is another side of the coin when it comes to war fighting.  When it works well, the soldier on the ground takes it for granted that we dominate the high ground (space) and have orbital platforms to help support our missions, ranging from secure communications systems, to the Global Positioning System which helps us navigate.

Remember that little black hockey puck plugged into your toughbook that gave you a real-time fix on your position as you drove the backstreets of Mosul?  Recall your 18E making comms shots out in the desert?  Well there is a whole team of people working behind the scenes that facilitates those capabilities and this is one of them.  Let’s get started and see what he has to say.

1. You are, no joke, a rocket scientist. For most of us we picture a bunch of dudes wearing white lab coats and peering over something very technical in a lab somewhere. Stereotypes aside, what is your job? What kind of educational background and training did you have to get in to this field?

Hey Jack – great start here. Yes, I am no joke a rocket scientist. The intro is interesting because as a group we are actually a rather eccentric group of people. I am also going to use this introduction to shamelessly promote what I do… as a new task I have taken on through the AIAA promoting the worth of the Energetics Committee to my fellow rocket scientists through the first step at SOFREP – the end user. The new twitter handle there is @AIAA_ECS.

My job description is a Certified Responsible Engineer. This is a systems level engineering job with my specific responsibility being the ordnance separation and destruct system for one of the largest launch vehicles flying in the world – in a nutshell I get to work with systems of explosive and solid propellant driven devices. Top to bottom I get to work the interactions between the system I am responsible for with every other system on the rockets down to all the inner workings of all the devices – I get to judge whether our subcontractors have design, analyzed and tested the components they are on contract to make can be flown on one of our launch vehicles. I get one of the final 20 or so system sign-offs for launch on every mission. When you see a rocket launch every mission begins and ends with some sort of ordnance to start the large liquid and solid fueled engines, release all the ground support equipment, operate gas valve systems, separate each stage of the vehicle, and eventually release the payload.

My path here was quite interesting. I formally trained in college as an aerospace engineer (there are a couple interesting RAND papers published on that term but that is for a conversation for a different day) with an emphasis in propulsion. But I really started the journey as a young boy (6 or 7 maybe) mixing up my own gunpowder with my chemistry set from very basic instructions in a book on artillery, it kind of flows that I ended up in interior ballistics. My formal college education is what you would think – a ton of calculus/differential equations mixed heavily with physics (including quantum), thermodynamics, mechanics etc but as an AE I also got exposed to spacecraft design, orbital mechanics, aircraft design and the lot. Really a taste of everything. The cool part was 15 years after graduation I got to work on a team with one of my college professors and his graduate assistant.

Things became very interesting when I started my first internships and work assignments with a company designing, qualifying and producing deployment and ejection systems for aircraft and missiles – that training switched me over from my formal education with everything at a steady state to the weird world of interior ballistic, exactly what you would find in guns, but at a much lower muzzle velocity. It is commonly thought of as black magic, controlling high burn rate propellants driving mechanisms all the way through detonation theory and shock interaction with structures, based on test, but the theory behind it is well grounded in gun ballistics and high temp physics – it only moves very fast (think microseconds timing instead of milliseconds in gun ballistics). My mentors taught me in the post world war 2 methods of solving equations in the closed form mode – it was a molding of old school European and American methods with a smattering of computer modelling to ease the calculation timing but still something that could be done with graphs and pencils.

After roughly six years I moved into Automotive Safety products – designing gas generators for car airbags. There is essentially the same amount of ordnance in a car as in a fighter plane. This experience exposed me to the design of mechanisms for high volume production, molding metal is fascinating, but this is where I got to hone my old formal skills in chemistry when we worked with gun propellant manufacturers worldwide to create the propellants we needed. I basically figured out how to tailor propellants to perform almost any type of work in the time needed. Then 9/11 happened….