Bolt-action vs. Semi-auto

There is an ongoing debate as to whether someone should purchase a semi-automatic rifle or a bolt-action rifle for long-range precision shooting. There are a few key variances in both which make them very different, and probably contribute to the wide divergence in opinion. Typically, the bolt-action precision rifle is considered more accurate than a semi automatic. However, this depends on numerous factors with regard to both firearm and ammunition, and modern semi-automatic rifles can be exceptionally accurate when designed with long-ranging shooting in mind. Some of the factors that precision shooters take into consideration when accuracy is discussed between the two platforms are:

  • Recoil
  • Gas release
  • Moving components


The bolt-action rifle, when fired, has only one stage of recoil, this being recoil to the rear—into the shooter’s shoulder pocket. The semi-auto precision rifle, when fired, has three stages of recoil: One being to the rear as the bullet exits the muzzle, another to the rear as the bolt slams into the buffer, and the final stage as the bolt slams forward, picking up an additional cartridge. Because the bolt-action rifle has only a single stage of recoil to the rear, some shooters find they can “drive the rifle” in a superior manner to semi-automatic rifles.

Gas release

When a cartridge is fired inside the chamber of a bolt-action rifle, the force from the burning charge and expanding gases propels the bullet down the barrel. However, some of the energy is transferred to the shooter through its normal recoil. In a semi-automatic rifle, some of the energy used to propel the bullet down the barrel is used to cycle the action.

Moving components

The moving components of the two rifle platforms must also be considered. Typically, precision-rifle shooters prefer the bolt rifle simply due to its lack of moving components, and by extension, simplicity and reliability. Taking a look at the bolt rifle, the only moving part is the bolt, which is manually operated by the shooter. Once the bolt is locked, the entire rifle is merely one solid component, thus making it easier to control through recoil and avoiding bullet-impact deviation downrange due to shooter-induced movement.

The semi-automatic precision rifle will always have a moving part in some section of the rifle, this usually being in the upper and lower receiver. If you’ve ever looked through the scope while in the prone position, you may have noticed that the slightest movement with your firing or support hand causes the upper receiver to shift slightly left or right, or in some cases, up or down. This slight shift/movement within the scope may be caused by a number of factors: shooter flinch, undue sympathetic squeeze as the rifle is firing, etc.

As the shooter begins to fire or begins to perceive recoil, the shooter may cause the upper and lower receiver to shift where the two components meet, thus causing a change in desired point of impact when the rifle is fired. To the untrained or novice shooter, this may seem like a “sloppy gun,” or a rifle that is unable to achieve 1MOA.


Semi automatic

As with any semi-automatic rifle or handgun, we can find an array of weapon-induced or shooter-induced malfunctions. Some of the malfunctions I have commonly seen within the semi-automatic family of precision rifles include the following: