Precision high-angle shooting is an art form in its own right. High-angle shooting is described as when the rifle is sighted-in (zeroed) on a level or nearly level range, and then it is fired either in an up-hill or down-hill direction, such as from a mountain top or tall building onto a target below.

This effect is common to precision shooters, especially with law enforcement, hunters, and military snipers. Through understanding high angle, we know that the bullet will always impact high. How high the bullet will impact can be determined through precise calculations using mathematical formulas.

To know exactly how high the bullet will impact, we need to revisit “bullet drop” and the “bullet path.” Bullet drop is always measured in a vertical direction regardless of the elevation angle of the bullet trajectory. The bullet drop is expressed as a negative number as the bullet falls away or below the bore line.

The bullet path is measured always in the perpendicular to the shooter’s line of sight through the sights on the gun. The bullet path is where the shooter will visually “see” the bullet pass at any instant of time while looking through the sights of the rifle (if this was even possible). At the rifle’s muzzle, the bullet path is negative because the bullet starts out below the line of sight of the shooter. Near the muzzle, the bullet will follow a path that will rise and cross the line of sight, then the bullet will travel above the line of sight until the target is reached. The bullet path is expressed as positive in this portion of the trajectory/flight. The bullet arc then crosses the line of sight at the zero range, meaning the bullet path is zero at the zero range, and will become a negative as the distance increases past zero range.

Do not let high-angle shooting confuse you, because we can look at it in a very basic way. As human beings, we have all had a chance to throw an object at a distance, may it be a rock, softball, etc. Let’s say you are tossing a rock in an underhand fashion at an object 20 yards away on a flat plain. Through your years of experience of rock throwing, you will naturally throw the rock high to create an arc to compensate for gravity in order for it to reach the target. Now let’s look at the situation, except that the target is on a downhill slope. The ground distance is still 20 yards away, but you’re three stories up on a rooftop. The same arc above the line of sight that allowed your rock to hit the target at ground level, on the flat plain, if applied to the uphill position, will now cause the rock to travel over the target.

The same rule applies to shooting high-angle. When zeroing your rifle at a flat plain, the bullet must create an arc; while shooting at high angle, the arc is slightly different. The effect of this error increases with distance and steepness of an angle to a maximum of 60 degrees. This error applies to both uphill and downhill shooting, meaning that the bullet will always hit above the target, thus you must hold or dial lower than the actual distance to the target.

The greater the angle, the less effect gravity has on the bullet/Shorter gravity distance.

The mathematics behind figuring out exactly how low we need to hold/dial on the scope are determined by using the Pythagorean Theorem. In mathematics, the Pythagorean Theorem is an equation that is expressed as **a² + b² = c²** and is relating to the lengths of the sides a,b, and c. For our purposes, the “a” and “b” will represent actual heights/lengths, and “c” is what we need to figure out, also known as the “slope dope.”

## COMMENTS

There are on this article.

You must become a subscriber or login to view or post comments on this article.